
www.manaraa.com

RESEARCH PAPER

Automated Execution of Financial Contracts on Blockchains

Benjamin Egelund-Müller • Martin Elsman •

Fritz Henglein • Omri Ross

Received: 10 January 2017 / Accepted: 16 August 2017 / Published online: 27 November 2017

� Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Abstract The paper investigates financial contract man-

agement on distributed ledgers and provides a working

solution implemented on the Ethereum blockchain. The

system is based on a domain-specific language for financial

contracts that is capable of expressing complex multi-party

derivatives and is conducive to automated execution. The

authors propose an architecture for separating contractual

terms from contract execution: a contract evaluator

encapsulates the syntax and semantics of financial con-

tracts without actively performing contractual actions; such

actions are handled by user-definable contract managers

that administer strategies for the execution of contracts.

Hosting contracts and contract managers on a distributed

ledger, side-by-side with digital assets, facilitates auto-

mated settlement of commitments without the need for an

intermediary. The paper discusses how the proposed tech-

nology may change the way financial institutions, regula-

tors, and individuals interact in a financial system based on

distributed ledgers.

Keywords Blockchain � Domain specific language �
Financial services � Distributed ledger

1 Introduction

The pillars on which the financial industry has been based

for the last century are being challenged. The disruptive

nature of new technologies such as modern machine

learning and blockchain technology are changing the rules

that form the financial sector and the financial system as a

whole. Schneider et al. (2016) estimate savings from

blockchain-based technologies to be in the region of tens of

billion of US dollars annually across the financial sector

with $11–12 billion in annual savings on the settlement of

cash securities alone. In this paper, we demonstrate how a

financial contract management system built upon a gener-

alized distributed ledger can automate the execution of

contracts, including clearing and settlement, thus poten-

tially inducing drastic changes in the financial industry.

Essentially, a distributed ledger or blockchain1 offers

participants the opportunity to establish distributed con-

sensus on a set of shared facts without assuming mutual

trust. It does so by implementing a single coherent logbook

of events shared amongst a set of non-trusting participants,

which acts as a single point of truth. Critically, no privi-

leged parties are required to maintain the ledger.

In its basic form, a distributed ledger provides a fixed

protocol for adding new events to a log of events. In Bit-

coin (Nakamoto 2009) the built-in protocol ensures that a

Bitcoin transfer can only occur from an authenticated

owner, whose transaction history sums to a positive bal-

ance, where the amount transferred is at most that balance

and has not already been spent. Bitcoin thus enforces a

specific contract amongst an open-ended number of

Accepted after two revisions by the editors of the special issue.

B. Egelund-Müller � M. Elsman � F. Henglein � O. Ross (&)

Department of Computer Science, University of Copenhagen,

Universitetsparken 5, 2100 Copenhagen, Denmark

e-mail: omriross@gmail.com

1 The term blockchain arises from the technique of sequencing blocks

of atomic payments between pseudonymous participants into tamper-

resistant verified (implicit) asset balances, which underlies Bitcoin, an

unstructured peer-to-peer system with its own virtual currency. We

use the term more generally here for peer-to-peer systems without

central control, but varying performance, privacy and authentication

mechanisms, and for the applications conceived for and made

possible by such technology.

123

Bus Inf Syst Eng 59(6):457–467 (2017)

https://doi.org/10.1007/s12599-017-0507-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-017-0507-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-017-0507-z&domain=pdf
https://doi.org/10.1007/s12599-017-0507-z

www.manaraa.com

participants. It has no mechanism for user-definable con-

tracts, though. We call such a system a level-1 distributed

ledger.

While financial contracts are conventionally written in

natural language, in recent years the financial industry has

moved towards expressing financial agreements using

formal contract languages, which serve as precise nota-

tions for expressing financial agreements among parties;

see Arnold et al. (1995), Jones et al. (2000), Jones and

Eber (2003), Andersen et al. (2006), Henglein et al.

(2009), Frankau et al. (2009), Hvitved (2010), Hvitved

et al. (2011), Hvitved et al. (2012), Andersen et al. (2014),

Schuldenzucker (2014), and Bahr et al. (2015). These

domain-specific languages (DSLs) have a clearly defined

syntax and semantics, which rigorously specify valid con-

tracts2 and their proper execution. Unlike natural legal

language, such formal languages are constructed for pre-

cision and automatic processing.

Integrating a contract language and its semantics into a

distributed ledger has the primary advantage of extending

the notion of single, verifiable truth to include not just ex-

post events, but also possible ex-ante events contractually

expected to happen. In particular, it becomes possible to

objectively and indisputably monitor whether some party is

violating the protocol established by a contract. We call

such an integrated system a level-2 distributed ledger

system.

In general, a contract obliges or permits its parties to

perform certain actions, but usually neither fixes all their

details nor does it perform the actions itself. For example, a

lease leaves both landlord and tenant with the monthly

option to give notice or not and it provides flexibility as to

when exactly to pay the rent; the lease itself certainly does

not perform the rental payments.

Simple financial contracts may not provide much leeway

for individual execution strategies; nonetheless, it is

important to distinguish between the terms of a contract,

specific strategies for executing it (of which there may be

infinitely many, considering both possible actions and their

timing), and their automated execution. The parties may

have their own contract strategies for what exactly to do

and when to do it; these must comply with the given con-

tract, but are not part of it.

A level-3 distributed ledger system is a level-2 system

that, additionally, supports user-definable automated con-

tract managers, which effect, clear and settle contractually

required transfers automatically. In other words, a contract

manager carries out a contract strategy, where the signa-

tories of a contract jointly authorize a contract manager to

perform actions on their behalf that are guaranteed to sat-

isfy the terms of the contract. The contract manager is fully

specified by source code authoritatively executed by the

distributed ledger, which thus guarantees not only con-

sensus on which past events have happened and which

contract has been entered into by whom, but also how and

when all parties’ obligations will be performed.

As we shall see, level-3 systems are realisable by gen-

eralized distributed ledger systems with

• a programming language with clear semantics for

implementing (replicated) state machines whose exe-

cution state is kept on the ledger; and

• digital assets that reside on the ledger (that is, their

ownership is effectively determined by the ledger state)

and that can be managed by properly authorized

programs executing on the ledger. Any real-world asset

can be recorded on a ledger in a legally binding fashion

if supported by suitable legislation with attendant real-

world enforcement mechanisms.3

Our main contribution is an implemented framework cap-

able of hosting level-2 and level-3 managed contracts. We

have adapted the contract language of Bahr et al. (2015),

which is capable of expressing a large number of over-the-

counter (OTC) financial contracts, and implemented an

execution engine for it on top of Ethereum, a modern

distributed ledger system (Wood 2016).4 The architecture

of the implementation separates the contract evaluator,

which defines the semantics of the contract language, from

contract managers, which evaluate contracts using the

contract evaluator and execute their obligations in accor-

dance with a contract strategy. Contract managers also link

the abstract names in the contracts they manage with actual

parties, who are uniquely identified by a public key, and

with feeds, which establish links to observable values in the

real world. Such observable values include, for instance,

end-of-day quotes for stocks published by trusted feed

providers.

Ethereum is able to execute level-3 ledger applications

through so-called smart contracts, (distributed) state

machines that are typically specified in Solidity, a class-

2 The term contract is polysemic within the context of this paper, as

it ranges over (1) legal contracts, natural language descriptions of

legally binding rights and obligations, including financial contracts,

(2) formal contracts, rights and obligations described in formal syntax

with an unambiguous semantics facilitating mathematical reasoning,

which are not necessarily legally binding, (3) smart contracts,

programs irrevocably executed on a distributed ledger.

3 This is rather common already and thus hardly controversial:

ownership of real estate, shares, bonds, and (bank account) money is

in many countries legally determined by the state of various

(nondistributed) ledgers. In Denmark, for example, the legally

definitive ledgers for these assets are in electronic form rather than

paper form.
4 The source code of our implementation, including technical

documentation, is available at https://github.com/bem7/ledger-con

tracts/.

123

458 B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017)

https://github.com/bem7/ledger-contracts/
https://github.com/bem7/ledger-contracts/

www.manaraa.com

based object-oriented programming language. A key

innovation of our work is the way in which contracts and

contract managers are expressed and executed on Ether-

eum. We implement contract managers as Solidity smart

contracts for registering and executing contracts. As smart

contracts are passive (i.e., no code is executed on the ledger

unless an authorized end-user triggers it), contract man-

agers expose a single method for executing a registered

contract, which any user who has an interest in contractual

progress (e.g., to receive transfers) may call. Since smart

contract execution is replicated on all the nodes that make

up the network, Ethereum requires users to provide gas

paid for in Ether, the native currency in Ethereum, to

execute smart contracts. Given our model for executing

contracts, this cost suitably falls on the party that triggers

execution.

Moreover, in Ethereum, any assets canonically available

on the ledger may be held by a smart contract itself, which,

as we shall see, opens up for contract managers that au-

tomatically can handle a range of possible coordination

mechanisms, including short-time escrow insurance (e.g.,

for cross-currency swaps) and margin accounts (e.g., for

traditional options).

The result is a significantly disintermediated financial

system. With assets recorded together with automated logic

for entering and executing contracts, a distributed ledger

can become the fabric of an entire financial (sub)system

with the potential of disintermediating contract parties by

automating and eliminating third parties involved in rec-

onciling, clearing, settling, archiving, and auditing. Fig-

ures 1 and 2 illustrate such a paradigmatic shift. With a

distributed ledger, (some) intermediaries can be elimi-

nated; many trades can be settled in real time; regulators

gain real-time access to all relevant details of contracts and

can perform systemic analyses and stress tests across

multiple parties and industry sectors. This shift may, pos-

sibly dramatically, lower the costs of implementing Euro-

pean Market Infrastructure Regulation, European Capital

Regulation and similar regulation such as the Dodd-Frank

Wall Street Reform and Consumer Protection Act

introduced recently to improve financial system trans-

parency and robustness.

This paper considers primarily how to accurately

describe and execute financial contracts within a dis-

tributed ledger. We acknowledge that the domain is also

subject to a multitude of legal considerations, including

how the judicial system, which is used to considerable

degrees of interpretive leeway, assesses fully formalized

contracts. While we comment on such considerations

throughout this paper, an extensive analysis of legal

implications is outside the scope of our present work.

Section 6 discusses future work concerning legal consid-

erations, and relates our results to work by Clack et al.

(2016).

In Sect. 2, we describe in depth how the multi-party

contract language of Bahr et al. (2015) can be adapted to

work on distributed ledgers and how contract evaluation

can be implemented on top of a modern distributed ledger

system such as Ethereum. Moreover, in Sect. 3, we intro-

duce the concept of contract managers and explore their

applications. In particular, we demonstrate how contract

managers link the abstract notions of transfers and

observables to concrete assets and feeds on the Ethereum

distributed ledger. Section 4 discusses the choice of

appropriate ledger for a financial contract system. Sec-

tion 5 discuss related work and Sect. 6 concludes the paper

with an extensive research agenda.

2 The Contract Language

In this section, we present an informal and example-driven

walkthrough of our language for expressing financial

contracts and discuss the considerations required to

implement it on a distributed ledger.

Figure 3 shows a simple 3-month USD-DKK cross-

currency forward with notional $1000 and strike 7, written

in our adapted version of the language designed and

implemented by Bahr et al. (2015). Notice how the con-

tract is composed of simpler contracts, joined by different

constructors such as translate, scale, and both. The

compositional approach facilitates a large variety of

Fig. 1 Today’s financial system is made up of a small group of large

institutions that communicate bilaterally. Regulatory authorities

ensure consistency of the system through audits of the institutions.

Individuals, companies and smaller financial service providers access

the financial system by partnering with a large institution

Fig. 2 Using a distributed ledger, the overhead of bilateral commu-

nication is eliminated as all parties enjoy direct access to the financial

system. The ledger manages contracts and automatically settles them

in accordance with participants’ strategies for doing so. Access scales

to an arbitrary number of participants as consensus protocols keep the

ledger consistent

123

B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017) 459

www.manaraa.com

different contracts using just a handful of well-chosen

constructors. The most basic constructors are those that are

not compositional (i.e., that do not encapsulate another

contract). Our language has two such constructors: zero,

which denotes the empty contract, and transfer, which

denotes the transfer of a single unit of a given currency

from one party to another. In the example forward contract,

the translate constructor is used to offset the enclosed

contract three months into the future, the scale con-

structor is used to multiply transfers induced by a factor of

1000 and later by a factor of 7, and the both constructor

specifies that both of its subcontracts must be executed.

Figure 4 illustrates contract evaluation or contract

reduction, the evolution from a contract’s original form via

intermediate expressions to zero, representing its com-

pletion. It is specified by a small number of computer-

interpretable rules that dictate with mathematical precision

how any contract is evaluated. This eliminates ambiguities

inherent in natural language and minimizes the potential

for disputes amongst the contract parties.

In addition to the reduction semantics, the language also

has a type system that enables parties to check – before

commiting to an agreement – whether a contract is well-

defined. Amongst other properties, the type system is able

to verify that a contract is causal, meaning it contains no

time absurdities. In the context of contracts on a ledger, the

presence of a type system would make it impossible to

create a contract where a constructor (such as transfer)

is used incorrectly, or where a sequence of events could put

the contract in a state that, e.g., requires a party to transfer

an amount of funds today that depends on tomorrow’s

exchange rate. The ability to check these properties with

mathematical certainty before signing a contract is a major

benefit of using a formal language to express contracts.

We consider the language of Bahr et al. (2015) well-

suited for use in distributed ledgers. First, in addition to the

reduction semantics and type system outlined above, the

language has a natural cashflow semantics, which means

that the result of evaluating a contract is a set of transfers

that ought to take place, a semantics that fit well with a

distributed ledger. Second, the language is multi-party and

not biased toward any party specifically. This property

contrasts with the language by Jones et al. (2000), which

implicitly takes the viewpoint of the owner versus a single

counterparty. As contracts recorded on a distributed ledger

should look the same to all parties, this property is essen-

tial. Finally, the language is powerful enough to express a

wide range of common contracts.

To use the language of Bahr et al. (2015) for repre-

senting and evaluating contracts on a distributed ledger, a

number of adaptations had to be made. Figure 5 shows the

full syntax of the adapted contract language. The adapta-

tions are predominantly related to the handling of feeds.

We will go into greater detail on the properties of feeds

later, but for now, it suffices to say that we use the notion of

feeds as sources of information that a contract operates

over. Such information can be anything from decisions

made by a contract’s parties, to events relating to other

contracts, to ‘‘real world’’ data such as the development in

interest or exchange rates.

translate(days(90),
scale(1000,

both(
transfer(USD, X, Y),
scale(7, transfer(DKK, Y, X))

)))

Fig. 3 FX forward contract

Fig. 4 Example of how a contract evaluator gradually reduces the

contract in Fig. 3 to zero. The contract takes effect at time t0, the

reduction (a) is applied at the first evaluation after the period of

90 days has passed, and the reduction (b) is applied after time D when

the caller notifies the contract evaluator that the specified transfer has

been settled succesfully

c ::= zero | scale(e, c1) | both(c1, c2) | contracts

transfer(a, p1, p2) | translate(t, c1) |
if e within t1 of t2

then λx. c1 else λx. c2

e ::= x | i | b | obs(f, a1, . . . , an, t) | expressions

op(e1, . . . , en) | foldt(λx. e1, e2, t)

t ::= now | u(n) | t + t | t − t time

u ::= hours | days | months | . . . time unit

a ::= this | i | l | p | a feed arg

op ::= + | − | × | div | = | if | . . . operators

where n ∈ N, i ∈ Z, b ∈ B, l ∈ Label, p, q ∈ Party,
a ∈ Asset, f ∈ Feed, x ∈ Var

Fig. 5 Syntax of the contract language

123

460 B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017)

www.manaraa.com

Specifically, the changes we have made include a multi-

source paradigm for feeds, parameterization of the obs

expression, and an amended model for the handling of

time. The changes to the handling of observables reflect a

paradigm where feed information is fetched directly from

different sources within a ledger. The new model for

handling time serves the dual purpose of enabling arbi-

trarily small units of time (limited only by the ledger’s

internal representation of time) as well as more flexible

querying of feeds, which is necessary to bound time range

within which a given observable is expected.

2.1 Examples

We now present a number of examples showcasing the

kinds of contracts that can be written in the language. The

first example is shown in Fig. 6 and represents an Ameri-

can option contract over a USD-DKK foreign exchange

rate with a notional of $1000 and a strike of 7. This con-

tract introduces the if within-contract constructor and

the obs expression. In brief, if within evaluates to one

contract if its expression becomes true at some point within

the given period of time and another contract if not; obs is

an expression that evaluates to an observable value at a

given point in time. Both of these constructs are tied clo-

sely to the language’s notion of time. The contract lan-

guage uses a notion of relative time centered around the

keyword now, which denotes different times depending on

the scope in which it is used. For example, in if ...

within days(90) of now, it refers to the start time of

the contract, while in obs(Decision, ..., now) it

iteratively refers to every time within the period spanned

over by the surrounding if within-contract.

Our next example is the barrier option contract shown in

Fig. 7. This contract extends the previous example with a

restriction that the option can only be exercised if a feed of

foreign exchange fixings reports a USD-DKK exchange

rate above 7.5 within 90 days of the contract’s start time.

Notice the use of a nested if within constructor. The

outer if within, which checks fixing rates against the

barrier value, spans a 90-day period from the start time of

the contract. The inner if within, which checks for a

decision to exercise, should span the same 90 days period,

thus limiting the period of time in which the option can be

exercised. This is where the nx of the outer if within

comes into play. Suppose the fixing rate goes above the

barrier after 10 days. Then the value of x will be set to 10

days. With that information, the scope of the inner if

within-contract can be limited to within days(90)

of -x, that is, to within 90 days of 10 days ago.

Next, consider the credit default swap (CDS) contract

shown in Fig. 8, which demonstrates the usefulness of the

multi-party feature as well as the versatility of observables.

In the contract, a party Y immediately owes $100 to

another party Z, in return for which Z commits to paying

$1000 to Y if a third party X defaults on the contract

identified by the number 314, managed by Con-

tractManager, within 1 year of the start time of the

CDS. This example depends upon the manager of the

underlying contract acting as a feed of defaults. In a real-

world example, the actual tracking of defaults would likely

be handled in a more elaborate manner; yet this serves as a

useful example of how observables enable us to construct

contracts that depend on other contracts. We discuss future

work on the handling of defaults in Sect. 6.

As a final example, the contract shown in Fig. 9 replaces

an old contract with a new one. In this case, we apply the

idea shown in the credit default swap example to have a

new contract take effect at precisely the time another

contract is terminated. The example demonstrates that

contract managers need not expose functionality for

updating or replacing contracts. By observing a contract

manager and allowing a contract to be terminated, such

functionality comes for free through the contract language.

if obs(Decisions, X, exercises, this, now)
within days(90) of now
then \x -> scale(

1000,
both(

transfer(USD, X, Y),
scale(7, transfer(DKK, Y, X))

))
else \x -> zero

Fig. 6 FX American option contract

if obs(Fixings, USDDKK, now) >= 7.5
within days(90) of now
then \x ->
if obs(Decisions, X, exercises, this, now)
within days(90) of -x
then \y -> scale(

1000,
both(

transfer(USD, Y, X),
scale(7, transfer(DKK, X, Y))

))
else \y -> zero

else \x -> zero

Fig. 7 FX up-and-in barrier option contract

both(
scale(100, transfer(USD, Y, Z)),
if obs(ContractManager, X, defaults, 314, now)
within years(1) of now
then \x -> scale(1000, transfer(USD, Z, Y))
else \x -> zero

)

Fig. 8 Credit default swap contract

123

B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017) 461

www.manaraa.com

2.2 Implementation

We use the term contract evaluator to describe the logic

that allows for the creation, type checking, and evaluation

of contracts. Our contract evaluator is implemented in the

Solidity programming language as a so-called smart con-

tract within the Ethereum ledger. A smart contract is a

program that lives within, operates on, and whose execu-

tion is verified by the distributed ledger.5 Despite smart

contract being a misleading term for state machine, par-

ticularly within the context of financial contracts, we shall

stick with it in the remainder of the paper because of its

prevalence in contemporary blockchain discourse.

Distributed ledgers are passive. If no transactions are

made, nothing happens on a ledger. This passiveness has

the implication that contracts cannot be evaluated contin-

uously, but only when someone explicitly triggers their

evaluation. As a consequence there will be time gaps

between a contract being evaluated. Hence, the imple-

mentation of contract evaluation must ensure that different

evaluation times do not result in different contract evalu-

ations. For example, evaluating an option contract on its

maturity date as opposed to every day up to maturity

should lead to exactly the same cashflows. We name this

property the consistency principle, which is crucial to

contract evaluation.

The greatest threat to the consistency principle are

observables. The contract evaluator has no way of checking

if an observable has been tampered with, for instance, by

changing the timestamp of a decision to an earlier time. We

address feeds in more depth shortly, but for now, it suffices

to say that for the way we handle observables, contract

parties should carefully audit feeds before settling on them

for use in their contracts.

Given that contracts are not evaluated automatically,

how do we ensure they will be evaluated at all? We reason

that a party who stands to gain from a contract being

evaluated will trigger its evaluation, and if no party stands

to gain from a contract being evaluated, no one is any

worse off if the contract is not evaluated. Notice that

contract parties can always independently simulate the

execution of a contract since the state of the ledger is

known and the source code of the contract evaluator is

public. Thus, parties can assess the results of contract

evaluation before triggering it on the distributed ledger.

Likewise, parties that need to evaluate periodically the

state of their portfolio (due for instance to regulation) can

do so without suffering the latency of transacting with the

distributed ledger, or in the case of Ethereum, having to

pay for the required gas (the cost of smart contract exe-

cution in Ethereum, as mentioned in Sect. 1).

The language of Bahr et al. (2015) operates with days as

the smallest unit of time, meaning that all times within a

day are equal – evaluating a contract multiple times in a

day does not make sense. Conversely, Ethereum operates

over seconds and other ledgers might well operate on even

smaller units of time. We keep the discrete time of Bahr

et al. (2015), but introduce the notion of a custom time

delta. The time delta is the smallest unit of time within a

contract and is part of a contract’s metadata. A contract’s

time delta is not critical to the meaning of the contract, but

has implications for the granularity of its evaluation and

settlement, as well as how often observables can be quer-

ied. For example, a barrier contract that depends on live

quotes requires a significantly lower time delta than one

that only reads daily fixings.

3 Contract Managers

With a ready contract evaluator implementated within

Ethereum, we now discuss automated execution of con-

tracts. In Sect. 1 we introduced a taxonomy of contracts

and contract strategies. The difference between the two is

best illustrated by an example. Consider a vanilla Ameri-

can option such as the one shown in Fig. 6. The rules for

how it may be evaluated are well-defined: The option can

be exercised or not, and such a decision to exercise may be

made at any time in the specified interval of time. Whether

or when to exercise the option is not defined in the contract;

rather, it is part of the contract strategy its owner applies.

While a classical result by Merton (1973) concludes that

American call options should never be exercised before

maturity (the end of the time interval), a recent study by

Jensen and Pedersen (2016) shows that many practitioners

benefit from exercising such options before maturity. The

multitude of stipulated ways and times of performing

actions to fulfill a contract and specific strategies for per-

forming actions employed by each contract party is the

essential difference between contracts per se and contract

strategies.

In our implementation, the contract language and its

semantics are represented by a contract evaluator and

contract strategies are encapsulated by contract managers.

They are implemented in an object-oriented manner with

5 A smart contract (and indeed the entire ledger) can be thought of as

a state machine whose state and execution is replicated across a peer-

to-peer network, supported by a suitable protocol to ensure observable

consensus on the state.

if obs(ContractManager, terminated, 314, now)
within weeks(1) of now
then \x -> ...
else \x -> zero
)

Fig. 9 Replacing a previous contract with a new one

123

462 B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017)

www.manaraa.com

the two being represented by different smart contracts

interacting with each other.

A contract manager contains a reference to a contract

evaluator, which can be analyzed, audited, and verified in

isolation. The contract evaluator provides all functionality

related to the contract language and its semantics, includ-

ing the syntax of the language, which it exposes through

functionality for constructing a contract’s abstract syntax

tree. It additionally provides functionality for statically

checking that a contract is well-defined and causal.

A contract manager employs the contract evaluator to

manipulate contracts in accordance with a particular,

completely open contract strategy, to which all contract

parties subscribe. At the practical level, this includes a

number of bookkeeping tasks, such as storing contracts,

handling the signing of contracts, allowing for contract

cancellation or transfer, and fetching observable data from

feeds. A contract manager encapsulates a particular con-

tract strategy on top of this functionality. Contract man-

agers may rely on human input to varying degrees: A

simple manager might defer all actions to the parties

involved, another might automatically take action in cases

where a rational choice exists and only defer more com-

plicated actions to the parties, while yet another manager

might employ advanced models to take automatically all

actions necessary for the successful settlement of a con-

tract. As the logic governing a contract manager is openly

available to everyone, users can in principle6 audit its code

and learn precisely in which cases actions will be based on

human input and in which cases the manager will take

action automatically.

We envision a future in which financial regulators

publish a universal contract evaluator, encapsulating a safe

domain-specific contract language capable of representing

any financial contract with a mathematically certified

contract semantics. Then the contract evaluator itself

would be guaranteed to operate correctly, which would

greatly reduce the risk of unintended behaviour. Compare

this to a recent study by Luu et al. (2016), which found

8,833 out of 19,366 scanned smart contracts expressed in

Ethereum’s general-purpose native bytecode language to

have at least one known vulnerability. Having a certified

contract semantics would counter concerns of a vulnerable

contract evaluator. This universal contract evaluator could

be used in a wide range of contract managers that encap-

sulate different strategies. Actors in the financial system

seeking to enter into a contract might develop a bespoke

contract manager for their specific use case or choose

between a wide range of off-the-shelf managers. Off-the-

shelf contract managers could range from for-profit man-

agers offered by financial service providers to crowd-based

or even fully automated contract managers developed by

the open-source community.

It is important to stress that contract managers should

not be viewed as opaque, human-controlled intermediaries;

they are completely specified mechanical computations and

thus, in principle, completely and reliably predictable. As

an example of a fully automated contract manager, con-

sider a manager that implements the logic of a margin

account to limit the risk of defaults. Upon signing a con-

tract, the different parties deposit an initial margin with the

manager. The manager continuously adjusts margin

requirements for the different parties as the contract

evolves. If a party is not able to maintain the margin,

instead of defaulting, the manager simply transfers the

funds to the counterparty and marks the contract as settled,

or finds a new counterparty for the contract in the market.

A financial institution can launch a contract manager

that largely takes action based on input from the institution

itself. In this case, one could argue that the financial

institution becomes an intermediary. While that may be the

case, the contract managers themselves will remain trans-

parent: Customers will be able to inspect their functionality

and infer exactly what actions the financial institution may

take.

A key component in the set up are feeds. A feed is a

smart contract that obeys a standard protocol for the

exchange of timestamped information. Due to the flexi-

bility of smart contracts, these may be backed by a variety

of mechanisms. A simple example is that of exchange rates

published through a bespoke smart contract by a single

entity (a so-called oracle), such as an exchange operator.

Another example are crowd-based data feeds that use a

mechanism such as SchellingCoin, as described by Buterin

(2014), to provide information about the outside world

based on a wisdom-of-crowds algorithm. Lastly, feeds may

arise from other contract managers on the ledger that

publish information about agreements being signed or

parties defaulting on a contract. In our implementation,

contract managers query feeds for information and pass

this information along to the contract evaluator. We con-

sider interaction with feeds, albeit largely standardized, an

element of the contract strategy and therefore place

responsibility for providing this functionality within con-

tract managers rather than directly within the contract

evaluator.

As mentioned previously, contract evaluation should

follow the consistency principle, which states that the time

and frequency of contracts being evaluated should not

affect the cashflows induced. Since feeds are queried by

contract managers during contract evaluation, the consis-

tency principle could be violated by a corrupted feed that

6 If coded in a Turing-complete programming language, contract

manager code analysis ultimately incurs arbitrarily high computa-

tional cost, though.

123

B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017) 463

www.manaraa.com

uses false timestamps for its events. We do not have a

solution for this problem and delegate responsibility for

auditing feeds to the parties that agree to use them. As

feeds will themselves be smart contracts, the logic gov-

erning them will be publicly visible, which should ease this

process. But particularly for oracles, trust in the institutions

that input real-world observations is required.

As contracts are evaluated, they induce cashflows. As

we have already mentioned, a benefit arising from placing

a full financial system on a shared ledger is that contract

managers may access and transfer funds directly, without

an intermediary. We use so-called tokens7 to represent

units of value on the ledger. Tokens can be any kind of fiat

value, such as a currency, equity in a company, or own-

ership of a bond, but may also (through a trusted proxy)

mirror commodities such as gold or Bitcoin. Presently no

fiat currencies are available on a distributed ledger. How-

ever, several national banks are exploring issuing a Central

Bank Digital Currency, including the Bank of England

(2015).

In our system, parties to a contract may grant a contract

manager permission to move tokens on their behalf, thus

enabling the contract manager to automatically settle

transfers required by a contract. If a party has insufficient

funds, the contract manager may automatically declare the

party defaulted through some appropriate mechanism. We

consider such mechanisms for handling defaults in an

automated way a very interesting area of future research

and discuss them further in Sect. 6. Notice that such

actions lie on the strategy side of a contract – parties pre-

ferring to settle their contracts manually could simply pick

a contract manager that offers this option.

In some sense, a contract mananger acts as a trusted

third party to whom financial contract parties, by their

cryptographic signatures, issue powers of attorney to act on

their behalf. These powers include granting control over

their (digital) assets. That should give all parties pause

prior to signing a financial contract with a contract man-

ager, satisfying the cautionary aspect of contracts, possibly

even more so than conventional contracts, which are usu-

ally informal and interpreted in the context of judicial

practice and convention. Further, assuming contract man-

agers are implemented in a Turing-complete programming

language, analyzing their properties is hard, both in prac-

tice as described by Luu et al. (2016) and as exploited in

The Dao Hack (Buterin 2016), as well as in theory, since

the problem is known to be computationally undecidable

(Rice 1953). This further sharpens the demand and incli-

nation for caution, as is desired under any binding

agreement.

Figure 10 summarizes the architecture of the imple-

mentation we have described. To further clarify how the

different parts of the implementation play together, Fig. 11

offers a step-by-step example of how a number of parties

enter into a contract through our implementation. Figure 12

provides a higher-level view of the relationship between

the ledger, the contract evaluator (contract engine), con-

tract managers, and contracts. At the lowest level, we find a

generalized distributed ledger that has a Turing-complete

programming language for expressing smart contracts.

Built on top of this distributed ledger, we have the contract

evaluator, which is implemented in the underlying dis-

tributed ledger’s smart contract programming language. It

Fig. 10 Contract managers reside within the ledger, acting as a nexus

that stores contracts, evaluates them using the contract evaluator,

pulling the data necessary to complete evaluation from the appropri-

ate feeds, and executing transfers by interacting with tokens. Users

interact with contract managers to create, sign, evaluate and execute

contracts. Feeds are populated by trusted external parties and tokens

are created by institutions such as central banks. Regulators can

inspect the ledger to get a full picture of the financial system

1. The parties inspect different options and agree on a
contract manager that evaluates contracts by a logic
they consider sound.

2. The parties construct or select a contract.
3. The parties grant the contract manager permission

to move funds on their behalf.
4. One party registers the contract with the contract

manager.
5. The contract manager checks that the contract is

well-defined and that the requisite permissions have
been granted for it to evaluate the contract.

6. All parties sign the contract through the manager;
the contract is now in effect.

7. The parties repeatedly call the contract manager’s
evaluate function.

8. The contract is gradually reduced and cashflows au-
tomatically settle as the contract manager moves
funds on behalf of the parties.

9. The contract eventually reduces to the zero con-
tract.

Fig. 11 Step-by-step walk-through of the mechanics involved as a

number of parties enter into a contract

7 A token is a smart contract that acts as an account manager, keeping

track of different actors’ balances of a specific unit of value. This

tracking is often represented as a mapping from users to amounts.

These smart contracts conventionally have functions for transferring

funds and allowing other actors (usually other smart contracts) to

transfer funds on the permitter’s behalf.

123

464 B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017)

www.manaraa.com

includes functionality for parsing a financial contract

domain-specific language (DSL), and for evaluating and

reducing financial contracts written in this DSL. At the

highest level, we have contract managers. A contract

manager is itself a smart contract, and so is also imple-

mented in the underlying distributed ledger’s smart con-

tract programming language. It uses the contract evaluator

to evaluate financial contracts expressed in the DSL and

submitted by the users. It further interprets the result

returned by the contract evaluator to take action in accor-

dance with the contract strategy it encapsulates.

4 Choice of Distributed Ledger

Ethereum is a natural pick for a proof-of-concept imple-

mentation as it is widely used, stable and backed by a large

community. Its object-oriented architecture, where differ-

ent self-governing smart contracts interact in a standard-

ized way, fits conceptually with our model of dividing

responsibilities between contract evaluators, contract

managers, feeds, and tokens (see Sect. 3).

In a more general sense, however, we consider the

choice of platform to be of secondary importance. For a

serious attempt at implementing a financial system on a

distributed ledger, Ethereum is perhaps not the ideal

choice, for a number of reasons. First, the computational

cost (i.e., the required gas) of running a full-fledged con-

tract evaluator is high.8 Second, Ethereum’s performance

in terms of transactions per second is presently unlikely to

meet the requirements of a global financial transaction

system. Finally, transactions are accessible to anyone who

has a copy of the ledger, which is a barrier to users who

require keeping their contracts private, not just their

identities.

We find that the common properties of a ledger imple-

mentation, such as its handling of privacy, its consensus

mechanism, and its identity verification processes are

orthogonal to the requirements of the architecture pre-

sented in Sect. 3. Thus, it should be a straightforward

exercise to port our implementation to other widely-known

generalized distributed ledgers, such as Hyperledger Fabric

(Hyperledger Project 2016) and Corda (Hearn 2016), and

those that come in the future.

We have identified features that we believe any ledger

that aspires to host a financial system should offer:

Private transactions It should be possible to keep

transactions private to the involved parties, with the

possible exception of designated auditors, such as

institutions responsible for financial stability. Corda,

amongst other ledgers, offers such privacy without

compromising consistency.

Authentication. For contracts that stipulate obligations

beyond transfers that can be guaranteed by the ledger

itself, it is necessary to authenticate parties by linking

them to legal entities in the real world. Ledger-based

know-your-customer (KYC) services, as described by

Moyano and Ross (2017), could become a relevant

service for authenticating users.

High performance. The ledger should be able to process

large quantities of transactions quickly. As ever larger

parts of the world economy are digitized, performance

requirements will only increase.

It is worth reflecting on how a distributed ledger-based

financial system compares to the existing system of back-

office processes that are maintained by financial

institutions.

In our view, the greatest benefit of the existing system is

the relative ease with which manual overrides or correc-

tions can be conducted – in the event of an unintended

action, a bug, a hacking, or similar, the state change can

often be reversed swiftly due to the fact that the process

owner has full control. Such error mitigation is also pos-

sible on a distributed ledger, but the tools currently avail-

able are crude – on Ethereum, for example, errors not

considered during the initial design of a smart contract can

only be mitigated with a hard fork, which is the deploy-

ment of a new version of the ledger software that explicitly

circumvents the error. Such hard forks are slow and con-

troversial actions, as discussed by Buterin (2016). Another

potential disadvantage of distributed ledger technology is

the present prevalence of distributed ledgers that share and

verify all transactions on all nodes in the network, giving

rise to potential issues relating to performance and privacy.

But as stated above, some distributed ledgers are already

Fig. 12 The hierarchy of the implementation. At the top there are

contracts, which are written by users and submitted to a contract

manager. Contract managers may be created by, for example,

financial service providers or the open-source community. They

store, evaluate and execute contracts, all using the same contract

evaluator (contract engine). The contract evaluator could, for

instance, be created by regulators to evaluate contracts in accordance

with a legally-binding semantics. Contracts, contract managers and

the contract evaluator operate within a single distributed ledger

8 Our implementation runs on a private test-net where the cost of gas

is not a concern.

123

B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017) 465

www.manaraa.com

moving away from the replicated state machine model

implemented by an open, unstructured peer-to-peer system,

the architecture of the original blockchain system, Bitcoin.

This contrasts to the numerous benefits offered by dis-

tributed ledger technology, which this paper has already

touched upon in Sect. 1. These include, but are hardly not

limited to: transparency of the mechanisms governing

settlement and clearing; near-instantaneous settlement;

streamlined auditing due to guaranteed consistency; higher

reliability following from removal of single points of

failure; and, lowered barriers to entry and thus increased

potential for competition due to standardization and greater

accessibility. Further, the potential in terms of cost-cutting

are substantial: The only direct costs of distributed ledgers

are for the hardware and electricity necessary to operate the

nodes of the network. Santander Innoventures and Oliver

Wyman (2015) estimate potential savings versus existing

systems to be in the range of $15–20 billion annually by

2022. Such savings are liable to eventually benefit

consumers.

5 Related Work

Various attempts exist of smart contracts that encapsulate a

single financial contract. Notably, R3 (2016) offers an

example of an interest-rate swap. Such ‘hard-coded’ con-

tracts, however, mix both contract semantics and contract

strategies in one single container, and hence do not offer a

clear separation of rights/obligations (contract semantics)

and assumed actions (contract strategies). Nor is it easily

possible to author novel contracts.

Mortensen (2016) has implemented the equivalent of a

contract evaluator for the Corda ledger with a contract

language based on the work of Jones et al. (2000).

6 Conclusion and Future Work

Our research can be extended in many directions, not only

to lift technical limitations, but also to establish a sound

financial and economic model based on proper jurispru-

dence. Here we outline some of the tasks yet to be com-

pleted and questions that remain open for investigation. We

list them in increasing order of abstraction.

First, the current implementation still has a rich road-

map, including the development of a varied sample port-

folio with an accompanying test suite, implementation of a

proper contract language parser (it currently requires users

to input the abstract syntax tree of a contract), improve-

ments in the handling and communication of errors,

verification of the implementation, and if it is to ever leave

the comforts of a test-net, significant performance tuning.

Second, the architecture presented in Sect. 3, upon

which the implementation is based, is an obvious candidate

for further refinements. Amongst possible pursuits is an

investigation into a push-based model for feeds (which

would guarantee proper timestamping of events), models

for how to transfer a party’s rights and obligations for a

contract to a third party (e.g., by inferring which parties

would be affected by the transfer and only require these

parties’ approval), a way to easily reverse contract evalu-

ation as well as actions induced by it (e.g., for reversing

transfers caused by corrupted feeds), and the implementa-

tion of prototypes on other ledgers than Ethereum, which

could prove or disprove the general applicability of the

model.

Third, the architecture presented in this paper places all

the central pieces on the ledger. However, we do not dis-

count the possibility that better models exist. We view two

other models particularly as worthy of investigation. The

first is a certificate approach in which contracts are stored,

evaluated, and settled off-ledger and consistency is ensured

through certificates that are verified through the ledger. The

second is a compile-to-specialized approach in which

contract, evaluator and manager are compiled off-ledger to

a specialized and high-performance smart contract, which

is then launched on the ledger. This could be done by

verified software that is regulated and guaranteed by

authorities.

Fourth, a different kind of pursuit would be to investi-

gate new kinds of contract managers and the extent to

which they can automatically do tasks that are currently

manually or centrally maintained. We are particularly

interested in models for how contract managers might

prevent, ensure against or otherwise handle defaults.

Conventionally institutions have assessed the credit-wor-

thiness of individuals and set fees accordingly. This pro-

cess might be managed in a decentralized, wisdom-of-

crowds manner or even be fully automated. We have

considered a schema in which the effectuation of a contract

depends upon the auctioning of a credit default swap over

that same contract. The price at which the CDS is bought

would indicate the party’s credit-worthiness. This whole

process could be automatically undertaken by a contract

manager.

Furthermore, from a legal standpoint, the ideas pre-

sented in this paper would require a robust legal framework

that clearly explains both the legal meaning of the contract

language constructors and reduction rules, as well as the

legal concessions granted to any given contract manager. It

is a possibly insurmountable socio-political undertaking to

create an understanding that accepts the mathematical

semantics of contracts and contract managers as legally

123

466 B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017)

www.manaraa.com

normative, and the actions taken by a contract manager as

legally binding, particularly in the case of fully-automated

contract managers, for which no real-world entities are

legally responsible. Until it is available, it may be neces-

sary to store legal contracts within the ledger, side-by-side

with their implementation equivalents – this is the

approach taken by R3 Corda (Hearn 2016). The overhead

of such paired contracts could partially be alleviated by

parameterizing legal contracts with values stored in a

contract manager, in the style of smart contract templates

as described by Clack et al. (2016). This raises the ques-

tion, however, whether the formal contract code is to be

considered legally binding and the associated text just

nonbinding information, or whether the text is legally

binding and the code a possibly-correct-possibly-incorrect

implementation in cases where they are not consistent with

each other.

Finally, we want to mention the opportunities that arise

from placing an entire financial system on a single ledger.

For example, regulators face issues assessing the risk of

financial instability (European Commission 2016). If all

transactions are logged on a shared ledger, regulators could

develop simpler or partly automated models for regulating

the financial industry and conduct systemic risk analysis in

real time. Tax authorities could more easily find cases of

tax evasion or fraud, or perhaps be able to automate (par-

tially or completely) the correct reporting and collection of

taxes such as VAT. Economists could compute key eco-

nomic indicators such as GDP and inflation numbers based

on up-to-the-minute transaction data on the ledger. We

look forward to further research on these topics.

Acknowledgements We thank Sofus Mortensen for suggesting the

topic of financial contracts on distributed ledgers.

References

Andersen J, Elsborg E, Henglein F, Simonsen JG, Stefansen C (2006)

Compositional specification of commercial contracts. Int J Softw

Tools Technol Transf 8(6):485–516

Andersen J, Bahr P, Henglein F, Hvitved T (2014) Domain-specific

languages for enterprise systems. In: Margaria T, Steffen B (eds)

Leveraging applications of formal methods, verification and

validation. Technologies for mastering change, vol 8802. LNCS.

Springer, Berlin, pp 73–95

Arnold B, Van Deursen A, Res M (1995) An algebraic specification

of a language for describing financial products. In: ICSE-17

workshop on formal methods application in software engineer-

ing. pp 6–13

Bahr P, Berthold J, Elsman M (2015) Certified symbolic management

of financial multi-party contracts. In: Proceedings of the 20th

ACM SIGPLAN international conference on functional pro-

gramming, ACM. pp 315–327

Bank of England (2015) Digital currencies. https://goo.gl/BvHbRU.

Accessed 5 Nov 2017

Buterin V (2014) SchellingCoin: a minimal-trust universal data feed.

https://goo.gl/w2aJwu. Accessed 5 Nov 2017

Buterin V (2016) Critical update re: DAO vulnerability. https://goo.

gl/Ojh8i1. Accessed 5 Nov 2017

Clack CD, Bakshi VA, Braine L (2016) Smart contract templates:

foundations, design landscape and research directions. arXiv:

1608.00771

European Commission (2016) Financial stability: new EU rules on

central clearing for certain credit derivative contracts. https://

goo.gl/676Hz8. Accessed 5 Nov 2017

Frankau S, Spinellis D, Nassuphis N, Burgard C (2009) Commercial

uses: going functional on exotic trades. J Funct Program

19(1):27–45

Hearn M (2016) Corda: a distributed ledger. https://goo.gl/KzAmDR.

Accessed 5 Nov 2017

Henglein F, Stefansen C, Simonsen J, Larsen K (2009) Poets: process-

oriented enterprise transaction systems. J Logic Algebraic

Program 78(5):381–401

Hvitved T (2010) A survey of formal languages for contracts. In:

Fourth workshop on formal languages and analysis of contract–

oriented software. pp 29–32

Hvitved T, Bahr P, Andersen J (2011) Domain-specific languages for

enterprise systems. Department of Computer Science, University

of Copenhagen, Tech. rep

Hvitved T, Klaedtke F, Zalinescu E (2012) A trace-based model for

multiparty contracts. J Logic Algebraic Program 81(2):72–98

Hyperledger Project (2016) Hyperledger fabric: protocol specifica-

tion. https://goo.gl/Z2PDHd. Accessed 5 Nov 2017

Jensen MV, Pedersen LH (2016) Early option exercise: never say

never. J Financ Econ 121(2):278–299

Jones SP, Eber JM (2003) How to write a financial contract. In:

Gibbons J, de Moor O (eds) The fun of programming. Palgrave

Macmillan

Jones SP, Eber JM, Seward J (2000) Composing contracts: an

adventure in financial engineering (functional pearl). In: Pro-

ceedings of the 20th ACM SIGPLAN international conference

on functional programming, ACM. pp 280–292

Luu L, Chu DH, Olickel H, Saxena P, Hobor A (2016) Making smart

contracts smarter. In: Proceedings of the 2016 ACM SIGSAC

conference on computer and communications security, ACM,

New York, NY, USA, CCS ’16. pp 254–269. https://doi.org/10.

1145/2976749.2978309.

Merton RC (1973) Theory of rational option pricing. Bell J Econ

Manag Sci 4(1):141–183

Mortensen S (2016) Universal contracts. https://goo.gl/u64skF.

Accessed 5 Nov 2017

Moyano JP, Ross O (2017) KYC optimization using distributed ledger

technology. Bus Inf Syst Eng. https://doi.org/10.1007/s12599-

017-0504-2

Nakamoto S (2009) Bitcoin: a peer-to-peer electronic cash system.

https://goo.gl/wXWfP. Accessed 5 Nov 2017

R3 (2016) IRS demo. https://goo.gl/miGCVa. Accessed 5 Nov 2017

Rice HG (1953) Classes of recursively enumerable sets and their

decision problems. Trans Am Math Soc 74:358–366

Santander Innoventures, Oliver Wyman (2015) The fintech 2.0 paper:

rebooting financial services. https://goo.gl/xMXtks. Accessed 5

Nov 2017

Schneider J, Blostein A, Lee B, Kent S, Groer I, Beardsley E (2016)

Blockchain-putting theory into practice. http://www.finyear.com/

attachment/690548/. Accessed 25 Nov 2017

Schuldenzucker S (2014) Decomposing contracts. Master’s thesis,

University of Bonn

Wood G (2016) Ethereum: a secure decentralised generalised

transaction ledger. https://goo.gl/0R6Slw, accessed 5 Novem-

ber 2017

123

B. Egelund-Müller et al.: Automated Execution of Financial Contracts on Blockchains, Bus Inf Syst Eng 59(6):457–467 (2017) 467

https://goo.gl/BvHbRU
https://goo.gl/w2aJwu
https://goo.gl/Ojh8i1
https://goo.gl/Ojh8i1
https://arxiv.org/abs/1608.00771
https://arxiv.org/abs/1608.00771
https://goo.gl/676Hz8
https://goo.gl/676Hz8
https://goo.gl/KzAmDR
https://goo.gl/Z2PDHd
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://goo.gl/u64skF
https://doi.org/10.1007/s12599-017-0504-2
https://doi.org/10.1007/s12599-017-0504-2
https://goo.gl/wXWfP
https://goo.gl/miGCVa
https://goo.gl/xMXtks
http://www.finyear.com/attachment/690548/
http://www.finyear.com/attachment/690548/
https://goo.gl/0R6Slw

	Automated Execution of Financial Contracts on Blockchains
	Abstract
	Introduction
	The Contract Language
	Examples
	Implementation

	Contract Managers
	Choice of Distributed Ledger
	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

